
期刊简介
《临床医学工程》杂志是经国家新闻出版总署批准(新出报刊〔2008〕946号),由国家医疗保健器具工程技术研究中心(广东省医疗器械研究所)主办的学术类科技期刊,以“服务于临床医务工作者和医学工程人员”为办刊宗旨。国内统一刊号:CN 44-1655/R,国际标准刊号:ISSN 1674-4659;国内邮发代号:46-130,国外发行代号:M8885。 《临床医学工程》刊名由第十一届全国人大常委会副委员长,九三学社中央主席,中国科学技术协会主席,北京大学医学部主任、教授,中国科学院院士韩启德题写。 《临床医学工程》为“中国学术期刊综合评价数据库统计源期刊”(编号:ZY0849),中国知网(CNKI)全文收录期刊;“中国核心期刊(遴选)数据库收录期刊”(编号GD084),万方数据-数字化期刊群(Wanfangdata)全文收录期刊;“中文科技期刊数据库(全文版)收录期刊”(编号06-1063);中国人民解放军医学图书馆“中国生物医学期刊引文数据库”收录期刊;Airiti Library(台湾华艺线上图书馆)全文收录期刊。据中国科学技术信息研究所、万方数据股份有限公司编制的《2013年版中国期刊引证报告》,《临床医学工程》杂志影响因子(Impact Factor,IF)为0.526。 刊期及出版日:月刊,每月15日出版 国内发行:广东省报刊发行局 订阅零售:全国各地邮局(所) 国外发行:中国国际图书贸易总公司 本刊文章不接排,不转版,方便查阅,方便复印。 欢迎临床医护、医学工程等人士投稿。 优先刊登基金课题论文,硕士和博士研究生毕业论文。
人工智能在医学影像诊断中的研究进展与临床应用
时间:2025-08-22 15:39:45
核心主题
AI辅助诊断在肺结节、乳腺肿瘤、脑卒中影像中的诊断效能及临床转化瓶颈
结构框架
1. 摘要
目的:系统评价深度学习算法在胸部CT、乳腺钼靶、头颅MRI诊断中的敏感性、特异性及临床实用性
方法:检索PubMed、Cochrane Library、中国知网2019-2024年文献,采用QUADAS-2工具评价文献质量,Stata 17.0进行Meta分析
结果:纳入58项研究(12万例患者),AI对肺结节诊断的合并AUC为0.94(95%CI:0.92-0.96),乳腺肿瘤诊断敏感性0.91(0.88-0.93),但基层医院临床采纳率仅32.6%
结论:AI影像诊断效能接近资深放射科医师,但在数据标准化、模型可解释性、医保政策配套等方面存在转化障碍
2. 关键词
人工智能;医学影像;深度学习;诊断准确性;系统综述
3. 正文大纲
引言:引用《自然医学》数据指出全球放射科医师缺口达40%,AI可能成为解决方案
技术原理:简述卷积神经网络(CNN)、Transformer模型在影像特征提取中的应用
临床证据:分部位阐述AI诊断性能(肺结节、乳腺肿瘤、脑卒中),对比不同算法(如3D-CNN vs 2D-CNN)的优势
转化瓶颈:分析数据孤岛(多中心数据共享率<15%)、模型泛化性(跨设备准确率下降12%-25%)、法律责任界定等问题
未来方向:联邦学习技术、AI+医师协同诊断模式、监管审批路径建议
4. 参考文献建议
Litjens G, et al. (2022). Deep learning as a tool for increased accuracy and efficiency in medical imaging. Nat Med.
国家药监局. (2024). 医疗器械软件审评技术指导原则.